70 research outputs found

    ΔE-Effect Magnetic Field Sensors

    Get PDF
    Many conceivable biomedical and diagnostic applications require the detection of small-amplitude and low-frequency magnetic fields. Against this background, a magnetometer concept is investigated in this work based on the magnetoelastic ΔE effect. The ΔE effect causes the resonance frequency of a magnetoelastic resonator to detune in the presence of a magnetic field, which can be read-out electrically with an additional piezoelectric phase. Various microelectromechanical resonators are experimentally analyzed in terms of the ΔE effect and signal-and-noise response. This response is highly complex because of the anisotropic and nonlinear coupled magnetic, mechanical, and electrical properties. Models are developed and extended where necessary to gain insights into the potentials and limits accompanying sensor design and operating parameters. Beyond the material and geometry parameters, we analyze the effect of different resonance modes, spatial property variations, and operating frequencies on sensitivity. Although a large ΔE effect is confirmed in the shear modulus, the sensitivity of classical cantilever resonators does not benefit from this effect. An approach utilizing surface acoustic shear-waves provides a solution and can detect small signals over a large bandwidth. Comprehensive analyses of the quality factor and piezoelectric material parameters indicate methods to increase sensitivity and signal-to-noise ratio significantly. First exchange-biased ΔE-effect sensors pave the way for compact setups and arrays with a large number of sensor elements. With an extended signal-and-noise model, specific requirements are identified that could improve the signal-to-noise ratio. The insights gained lead to a new concept that can circumvent previous limitations. With the results and models, important contributions are made to the understanding and development of ΔE-effect sensors with prospects for improvements in the future

    Miniaturized Double-Wing Delta-E Effect Sensors

    Full text link
    Magnetoelastic composites are integral elements of sensors and actuators utilizing magnetostriction for their functionality. Their sensitivity typically scales with the saturation magnetostriction and inversely with magnetic anisotropy. However, this makes the devices prone to minuscule residual anisotropic stress from the fabrication process, impairing their performance and reproducibility, hence limiting their suitability for arrays. This study presents a shadow mask deposition technology combined with a free-free magnetoelectric microresonator design intended to minimize residual stress and inhomogeneity in the magnetoelastic layer. Resonators are experimentally and theoretically analyzed regarding local stress anisotropy, magnetic anisotropy, and the {\Delta}E effect in several resonance modes. Further, the sensitivity is analyzed in the example of {\Delta}E-effect sensors. The results demonstrate a device-to-device variation of the resonance frequency < 0.2 % with sensitivities comparable with macroscopic {\Delta}E-effect sensors. The reproducibility is drastically improved over previous magnetoelastic device arrays. This development marks a step forward in the reproducibility and homogeneity of magnetoelastic resonators and contributes to the feasibility of large-scale, integrated sensor arrays.Comment: 26 pages, 13 figure

    The Role of Mobile Point Defects in Two-Dimensional Memristive Devices

    Full text link
    Two-dimensional (2D) layered transition metal dichalcogenides (TMDCs) are promising memristive materials for neuromorphic computing systems as they could solve the problem of the excessively high energy consumption of conventional von Neumann computer architectures. Despite extensive experimental work, the underlying switching mechanisms are still not understood, impeding progress in material and device functionality. This study reveals the dominant role of mobile defects in the switching dynamics of 2D TMDC materials. The switching process is governed by the formation and annihilation dynamics of a local vacancy depletion zone. Moreover, minor changes in the interface potential barriers cause fundamentally different device behavior previously thought to originate from multiple mechanisms. The key mechanisms are identified with a charge transport model for electrons, holes, and ionic point defects, including image-charge-induced Schottky barrier lowering (SBL). The model is validated by comparing simulations to measurements for various 2D MoS2_2-based devices, strongly corroborating the relevance of vacancies in TMDC devices and offering a new perspective on the switching mechanisms. The insights gained from this study can be used to extend the functional behavior of 2D TMDC memristive devices in future neuromorphic computing applications

    Frequency Dependency of the Delta-E Effect and the Sensitivity of Delta-E Effect Magnetic Field Sensors

    Get PDF
    In recent years the delta-E effect has been used for detecting low frequency and low amplitude magnetic fields. Delta-E effect sensors utilize a forced mechanical resonator that is detuned by the delta-E effect upon application of a magnetic field. Typical frequencies of operation are from several kHz to the upper MHz regime. Different models have been used to describe the delta-E effect in those devices, but the frequency dependency has mainly been neglected. With this work we present a simple description of the delta-E effect as a function of the differential magnetic susceptibility χ of the magnetic material. We derive an analytical expression for χ that permits describing the frequency dependency of the delta-E effect of the Young's modulus and the magnetic sensitivity. Calculations are compared with measurements on soft-magnetic (Fe90Co10)78Si12B10 thin films. We show that the frequency of operation can have a strong influence on the delta-E effect and the magnetic sensitivity of delta-E effect sensors. Overall, the delta-E effect reduces with increasing frequency and results in a stiffening of the Young's modulus above the ferromagnetic resonance frequency. The details depend on the Gilbert damping. Whereas for large Gilbert damping the sensitivity continuously decreases with frequency, typical damping values result in an amplification close to the ferromagnetic resonance frequency

    Multi-Mode Love-Wave SAW Magnetic-Field Sensors

    Get PDF
    A surface-acoustic-wave (SAW) magnetic-field sensor utilizing fundamental, first- and second-order Love-wave modes is investigated. A 4.5   μ m SiO2 guiding layer on an ST-cut quartz substrate is coated with a 200 n m (Fe90Co10)78Si12B10 magnetostrictive layer in a delay-line configuration. Love-waves are excited and detected by two interdigital transducers (IDT). The delta-E effect in the magnetostrictive layer causes a phase change with applied magnetic field. A sensitivity of 1250 ° / m T is measured for the fundamental Love mode at 263 M Hz . For the first-order Love mode a value of 45 ° / m T is obtained at 352 M Hz . This result is compared to finite-element-method (FEM) simulations using one-dimensional (1D) and two-and-a-half-dimensional (2.5 D) models. The FEM simulations confirm the large drop in sensitivity as the first-order mode is close to cut-off. For multi-mode operation, we identify as a suitable geometry a guiding layer to wavelength ratio of h GL / λ ≈ 1.5 for an IDT pitch of p = 12   μ m . For this layer configuration, the first three modes are sufficiently far away from cut-off and show good sensitivity

    The Role of Mobile Point Defects in Two-Dimensional Memristive Devices

    Get PDF
    Two-dimensional (2D) layered transition metal dichalcogenides (TMDCs) are promising memristive materials for neuromorphic computing systems as they could solve the problem of the excessively high energy consumption of conventional von Neumann computer architectures. Despite extensive experimental work, the underlying switching mechanisms are still not understood, impeding progress in material and device functionality. This study reveals the dominant role of mobile defects in the switching dynamics of 2D TMDC materials. The switching process is governed by the formation and annihilation dynamics of a local vacancy depletion zone. Moreover, minor changes in the interface potential barriers cause fundamentally different device behavior previously thought to originate from multiple mechanisms. The key mechanisms are identified with a charge transport model for electrons, holes, and ionic point defects, including image-charge-induced Schottky barrier lowering (SBL). The model is validated by comparing simulations to measurements for various 2D MoS2-based devices, strongly corroborating the relevance of vacancies in TMDC devices and offering a new perspective on the switching mechanisms. The insights gained from this study can be used to extend the functional behavior of 2D TMDC memristive devices in future neuromorphic computing applications

    Magnetoelastic Coupling and Delta-E Effect in Magnetoelectric Torsion Mode Resonators

    Get PDF
    Magnetoelectric resonators have been studied for the detection of small amplitude and low frequency magnetic fields via the delta-E effect, mainly in fundamental bending or bulk resonance modes. Here, we present an experimental and theoretical investigation of magnetoelectric thin-film cantilevers that can be operated in bending modes (BMs) and torsion modes (TMs) as a magnetic field sensor. A magnetoelastic macrospin model is combined with an electromechanical finite element model and a general description of the delta-E effect of all stiffness tensor components Cij is derived. Simulations confirm quantitatively that the delta-E effect of the C66 component has the promising potential of significantly increasing the magnetic sensitivity and the maximum normalized frequency change Δfr. However, the electrical excitation of TMs remains challenging and is found to significantly diminish the gain in sensitivity. Experiments reveal the dependency of the sensitivity and Δfr of TMs on the mode number, which differs fundamentally from BMs and is well explained by our model. Because the contribution of C11 to the TMs increases with the mode number, the first-order TM yields the highest magnetic sensitivity. Overall, general insights are gained for the design of high-sensitivity delta-E effect sensors, as well as for frequency tunable devices based on the delta-E effect

    Exchange biased delta-E effect enables the detection of low frequency pT magnetic fields with simultaneous localization

    Get PDF
    Delta-E effect sensors are based on magnetoelectric resonators that detune in a magnetic field due to the delta-E effect of the magnetostrictive material. In recent years, such sensors have shown the potential to detect small amplitude and low-frequency magnetic fields. Yet, they all require external magnetic bias fields for optimal operation, which is highly detrimental to their application. Here, we solve this problem by combining the delta-E effect with exchange biased multilayers and operate the resonator in a low-loss torsion mode. It is comprehensively analyzed experimentally and theoretically using various kinds of models. Due to the exchange bias, no external magnetic bias fields are required, but still low detection limits down to [Formula: see text] at 25 Hz are achieved. The potential of this concept is demonstrated with a new operating scheme that permits simultaneous measurement and localization, which is especially desirable for typical biomedical inverse solution problems. The sensor is localized with a minimum spatial resolution of 1 cm while measuring a low-frequency magnetic test signal that can be well reconstructed. Overall, we demonstrate that this class of magnetic field sensors is a significant step towards first biomedical applications and compact large number sensor arrays

    Mechanical-Resonance-Enhanced Thin-Film Magnetoelectric Heterostructures for Magnetometers, Mechanical Antennas, Tunable RF Inductors, and Filters

    Get PDF
    The strong strain-mediated magnetoelectric (ME) coupling found in thin-film ME heterostructures has attracted an ever-increasing interest and enables realization of a great number of integrated multiferroic devices, such as magnetometers, mechanical antennas, RF tunable inductors and filters. This paper first reviews the thin-film characterization techniques for both piezoelectric and magnetostrictive thin films, which are crucial in determining the strength of the ME coupling. After that, the most recent progress on various integrated multiferroic devices based on thin-film ME heterostructures are presented. In particular, rapid development of thin-film ME magnetometers has been seen over the past few years. These ultra-sensitive magnetometers exhibit extremely low limit of detection (sub-pT/Hz1/2) for low-frequency AC magnetic fields, making them potential candidates for applications of medical diagnostics. Other devices reviewed in this paper include acoustically actuated nanomechanical ME antennas with miniaturized size by 1-2 orders compared to the conventional antenna; integrated RF tunable inductors with a wide operation frequency range; integrated RF tunable bandpass filter with dual H- and E-field tunability. All these integrated multiferroic devices are compact, lightweight, power-efficient, and potentially integrable with current complementary metal oxide semiconductor (CMOS) technology, showing great promise for applications in future biomedical, wireless communication, and reconfigurable electronic systems

    A3-A3 Bypass for Giant Anterior Cerebral Artery Aneurysm: 2-Dimensional Operative Video.

    No full text
    Large fusiform anterior cerebral artery aneurysms often require revascularization to allow for the treatment of the aneurysm and preservation of distal perfusion. The A3-A3 side-to-side anastomosis maintains ipsilateral distal perfusion. The inflow to the fusiform segment can then be clip occluded to treat the diseased vessel segment. This procedure is illustrated by the case in this video. The patient had a large right anterior cerebral artery fusiform aneurysm. An anterior interhemispheric craniotomy with the right side down was utilized for the approach. Postprocedural angiography demonstrated occlusion of the aneurysmal segment and patent distal perfusion within the ipsilateral distal segment. The patient gave informed consent for surgery and video recording. Institutional review board approval was deemed unnecessary. Used with permission from Barrow Neurological Institute, Phoenix, Arizona
    • …
    corecore